Installation Guide
This guide will help you install all three packages in the WildDetect monorepo: WilData, WildTrain, and WildDetect.
Prerequisites
System Requirements
- Python: 3.9, 3.10, or 3.11
- Package Manager: uv (recommended) or pip
- Git: For cloning repositories
- GPU (optional): CUDA-capable GPU for faster inference and training
Operating System
- Windows 10/11
- Linux (Ubuntu 20.04+ recommended)
- macOS (Intel or Apple Silicon)
Windows Users
This monorepo is developed and tested on Windows. All scripts use .bat format for Windows compatibility.
Installation Methods
1. Clone the Repository
2. Create Virtual Environment
Using uv (recommended):
uv venv --python 3.10
# Activate on Windows
.venv\Scripts\activate
# Activate on Linux/macOS
source .venv/bin/activate
3. Install PyTorch (GPU or CPU)
With CUDA 11.8 (GPU):
uv pip install torch==2.6.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
CPU Only:
4. Install WildDetect Packages
Install all three packages in development mode:
# Install WilData
cd wildata
uv pip install -e .
cd ..
# Install WildTrain
cd wildtrain
uv pip install -e .
cd ..
# Install WildDetect (main package)
uv pip install -e .
5. Install MMDetection (Optional)
If you want to use MMDetection framework:
# Install OpenMMLab dependencies
uv pip install -U openmim
uv run mim install mmengine
# Install MMCV (choose based on your setup)
# For CPU:
uv pip install mmcv==2.0.1 -f https://download.openmmlab.com/mmcv/dist/cpu/torch2.1/index.html
# For CUDA 11.8:
uv pip install mmcv==2.0.1 -f https://download.openmmlab.com/mmcv/dist/cu118/torch2.1/index.html
# Install MMDetection
uv run mim install mmdet
uv pip install numpy==1.26.4
You can install packages directly from GitHub:
Verification
Verify your installation by checking package versions:
# Check WilData
wildata --version
# Check WildTrain
wildtrain --version
# Check WildDetect
wildetect --version
You should also be able to import the packages in Python:
import wildata
import wildtrain
import wildetect
print(f"WilData: {wildata.__version__}")
print(f"WildTrain: {wildtrain.__version__}")
print(f"WildDetect: {wildetect.__version__}")
Optional Dependencies
DVC (Data Version Control)
For dataset versioning with WilData:
# Basic DVC
uv pip install "wildata[dvc]"
# With cloud storage support
uv pip install "dvc[s3]" # AWS S3
uv pip install "dvc[gcs]" # Google Cloud Storage
uv pip install "dvc[azure]" # Azure Blob Storage
Label Studio Integration
For working with Label Studio annotations:
FiftyOne Visualization
For interactive dataset visualization:
GPU Setup
CUDA Configuration
If you have an NVIDIA GPU, ensure CUDA is properly installed:
-
Check CUDA availability:
-
Check GPU devices:
Memory Requirements
| Task | Minimum RAM | Recommended RAM | GPU Memory |
|---|---|---|---|
| Detection | 8GB | 16GB | 4GB |
| Training | 16GB | 32GB | 8GB |
| Large Rasters | 32GB | 64GB | 8GB+ |
Troubleshooting
Common Issues
Import errors after installation
Make sure your virtual environment is activated:
CUDA out of memory
Reduce batch size or tile size in your configuration files:
MMDetection installation fails
Install dependencies in this order: 1. PyTorch 2. MMCV (matching your CUDA version) 3. MMEngine 4. MMDetection
uv command not found
Install uv package manager:
Windows-Specific Issues
ProcessPool Not Supported
On Windows, multiprocessing with ProcessPoolExecutor is not supported. The packages automatically use threading instead.
Getting Help
If you encounter issues:
- Check the Troubleshooting Guide
- Search GitHub Issues
- Create a new issue with your error message and system info
Next Steps
Once installation is complete:
Installation successful? Head to the Environment Setup to configure your workspace.